Subgroup ($H$) information
| Description: | $C_{10}:C_4$ |
| Order: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Generators: |
$ac^{3}d, c^{4}, d^{2}, bc$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $C_{20}.C_2^4$ |
| Order: | \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_{10}.(C_2^4\times S_4)$, of order \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $\operatorname{res}(S)$ | $D_4\times F_5$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $C_2\times D_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $C_2^3:D_{10}$ |