Properties

Label 3072.cc.6.a1.a1
Order $ 2^{9} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: not computed
Generators: $\left(\begin{array}{rr} 3 & 16 \\ 16 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 2 \\ 22 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), abelian (hence metabelian and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_4\times C_{16}$
Normalizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_2\times C_2^3.(C_4\times C_{24})$$(C_2^3\times C_4\times C_{16}).C_2$
Maximal under-subgroups:$C_2^3\times C_4\times C_8$$C_2^4\times C_{16}$$C_2^4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$$C_2^2\times C_4\times C_{16}$

Other information

Möbius function not computed
Projective image not computed