Properties

Label 3072.cc.1.a1.a1
Order $ 2^{10} \cdot 3 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Index: $1$
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 30 & 31 \\ 1 & 18 \end{array}\right), \left(\begin{array}{rr} 12 & 11 \\ 9 & 19 \end{array}\right), \left(\begin{array}{rr} 31 & 0 \\ 0 & 31 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 2 \\ 22 & 11 \end{array}\right), \left(\begin{array}{rr} 27 & 24 \\ 8 & 19 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 3 & 16 \\ 16 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $(C_4\times A_4).C_2^5.C_2^6$
$\card{W}$\(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_2^3.(C_4\times C_{24})$$C_2\times A_4.\OD_{32}.C_2$$C_2\times A_4.\OD_{32}.C_2$$(C_2^3\times C_4\times C_{16}).C_2$$C_{24}.(C_4\times C_8)$

Other information

Möbius function not computed
Projective image not computed