Subgroup ($H$) information
Description: | $C_2^2\times C_4\times C_{16}$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$\left(\begin{array}{rr}
3 & 16 \\
16 & 3
\end{array}\right), \left(\begin{array}{rr}
31 & 30 \\
10 & 21
\end{array}\right), \left(\begin{array}{rr}
1 & 16 \\
16 & 1
\end{array}\right), \left(\begin{array}{rr}
31 & 0 \\
0 & 31
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
Order: | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_4\times A_4).C_2^5.C_2^6$ |
$\operatorname{Aut}(H)$ | $C_2^8.C_2^4.D_6.C_2^3$ |
$\card{W}$ | \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | not computed |
Projective image | not computed |