Properties

Label 270284.a.196.a1.a1
Order $ 7 \cdot 197 $
Index $ 2^{2} \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1379}$
Order: \(1379\)\(\medspace = 7 \cdot 197 \)
Index: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Exponent: \(1379\)\(\medspace = 7 \cdot 197 \)
Generators: $b^{197}, b^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, and cyclic (hence abelian, elementary ($p = 7,197$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_7\times F_{197}$
Order: \(270284\)\(\medspace = 2^{2} \cdot 7^{3} \cdot 197 \)
Exponent: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{196}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Exponent: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Automorphism Group: $C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1379}.C_7.C_{84}.C_2$
$\operatorname{Aut}(H)$ $C_2\times C_{588}$, of order \(1176\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{2} \)
$W$$C_{196}$, of order \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_{1379}$
Normalizer:$C_7\times F_{197}$
Complements:$C_{196}$ $C_{196}$ $C_{196}$ $C_{196}$ $C_{196}$ $C_{196}$ $C_{196}$
Minimal over-subgroups:$C_{1379}:C_7$$C_7\times D_{197}$
Maximal under-subgroups:$C_{197}$$C_7$

Other information

Möbius function$0$
Projective image$F_{197}$