Properties

Label 270284.a.38612.a1.a1
Order $ 7 $
Index $ 2^{2} \cdot 7^{2} \cdot 197 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Exponent: \(7\)
Generators: $b^{197}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_7\times F_{197}$
Order: \(270284\)\(\medspace = 2^{2} \cdot 7^{3} \cdot 197 \)
Exponent: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $F_{197}$
Order: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Exponent: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Automorphism Group: $F_{197}$, of order \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1379}.C_7.C_{84}.C_2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_7\times F_{197}$
Normalizer:$C_7\times F_{197}$
Complements:$F_{197}$ $F_{197}$ $F_{197}$ $F_{197}$ $F_{197}$ $F_{197}$ $F_{197}$
Minimal over-subgroups:$C_{1379}$$C_7^2$$C_{14}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$F_{197}$