Properties

Label 270284.a.1379.b1.f1
Order $ 2^{2} \cdot 7^{2} $
Index $ 7 \cdot 197 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{196}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(1379\)\(\medspace = 7 \cdot 197 \)
Exponent: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Generators: $a^{49}b^{994}, a^{98}b^{868}, a^{28}b^{280}, a^{4}b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_7\times F_{197}$
Order: \(270284\)\(\medspace = 2^{2} \cdot 7^{3} \cdot 197 \)
Exponent: \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1379}.C_7.C_{84}.C_2$
$\operatorname{Aut}(H)$ $C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_7\times C_{196}$
Normalizer:$C_7\times C_{196}$
Normal closure:$F_{197}$
Core:$C_1$
Minimal over-subgroups:$F_{197}$$C_7\times C_{196}$
Maximal under-subgroups:$C_{98}$$C_{28}$
Autjugate subgroups:270284.a.1379.b1.a1270284.a.1379.b1.b1270284.a.1379.b1.c1270284.a.1379.b1.d1270284.a.1379.b1.e1270284.a.1379.b1.g1

Other information

Number of subgroups in this conjugacy class$197$
Möbius function$1$
Projective image$C_7\times F_{197}$