Subgroup ($H$) information
Description: | $C_{196}$ |
Order: | \(196\)\(\medspace = 2^{2} \cdot 7^{2} \) |
Index: | \(1379\)\(\medspace = 7 \cdot 197 \) |
Exponent: | \(196\)\(\medspace = 2^{2} \cdot 7^{2} \) |
Generators: |
$a^{49}b^{994}, a^{98}b^{868}, a^{28}b^{280}, a^{4}b^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_7\times F_{197}$ |
Order: | \(270284\)\(\medspace = 2^{2} \cdot 7^{3} \cdot 197 \) |
Exponent: | \(38612\)\(\medspace = 2^{2} \cdot 7^{2} \cdot 197 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1379}.C_7.C_{84}.C_2$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $197$ |
Möbius function | $1$ |
Projective image | $C_7\times F_{197}$ |