Properties

Label 27000.b.5.a1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{2} $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:(C_2\times C_{12})$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Index: \(5\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{3}, c^{10}d^{10}, b^{2}d^{9}, a^{4}, d^{10}, c^{3}d^{3}, b^{5}, a^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{15}^2.C_3.C_{24}.C_2^2$
$W$$C_{15}^2:(C_2\times C_{12})$, of order \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2:(C_2\times C_{12})$
Normal closure:$C_{15}^2:(C_6\times F_5)$
Core:$C_{15}^2:C_6$
Minimal over-subgroups:$C_{15}^2:(C_6\times F_5)$
Maximal under-subgroups:$C_{15}^2:(C_2\times C_6)$$C_{15}^2:C_{12}$$C_{15}^2:C_{12}$$S_3\times C_5^2:C_{12}$$C_{15}:(S_3\times F_5)$$C_4\times C_3^2:C_6$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{15}^2:(C_6\times F_5)$