Subgroup ($H$) information
Description: | $C_{15}^2:C_6$ |
Order: | \(1350\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{2} \) |
Index: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$b^{5}, c^{3}d^{3}, c^{10}d^{10}, d^{10}, a^{4}, b^{2}c^{9}d^{3}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
Description: | $C_{15}^2:(C_6\times F_5)$ |
Order: | \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
Description: | $F_5$ |
Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Automorphism Group: | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_{15}^2.(C_{24}\times S_3).C_2$ |
$W$ | $C_{15}^2:(C_2\times C_{12})$, of order \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{15}^2:(C_6\times F_5)$ |