Properties

Label 27000.b.20.a1
Order $ 2 \cdot 3^{3} \cdot 5^{2} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_6$
Order: \(1350\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{5}, c^{3}d^{3}, c^{10}d^{10}, d^{10}, a^{4}, b^{2}c^{9}d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $F_5$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{15}^2.(C_{24}\times S_3).C_2$
$W$$C_{15}^2:(C_2\times C_{12})$, of order \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_{15}^2:(C_6\times F_5)$
Complements:$F_5$ $F_5$ $F_5$ $F_5$
Minimal over-subgroups:$C_{15}^2:C_{30}$$C_{15}^2:(C_2\times C_6)$
Maximal under-subgroups:$C_{15}^2:C_3$$C_{15}^2:C_2$$C_5^2:C_3\times S_3$$C_3^2:C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^2:(C_6\times F_5)$