Subgroup ($H$) information
Description: | $C_{15}^2:C_{12}$ |
Order: | \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \) |
Index: | \(10\)\(\medspace = 2 \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$a^{3}, b^{2}d^{9}, d^{10}, a^{6}, a^{4}, c^{3}d^{3}, c^{10}d^{5}$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
Description: | $C_{15}^2:(C_6\times F_5)$ |
Order: | \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_{15}^2.(C_6\times C_{24}).C_2$ |
$W$ | $S_3\times C_5^2:C_{12}$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $5$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_{15}^2:(C_6\times F_5)$ |