Properties

Label 27000.b.24.a1
Order $ 3^{2} \cdot 5^{3} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{15}^2$
Order: \(1125\)\(\medspace = 3^{2} \cdot 5^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $c^{10}d^{10}, b^{2}, c^{3}d^{12}, d^{10}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), a semidirect factor, and abelian (hence metabelian and an A-group).

Ambient group ($G$) information

Description: $C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)\times C_4.\PSL(3,5)$
$W$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_5\times C_{15}^2$
Normalizer:$C_{15}^2:(C_6\times F_5)$
Complements:$C_2\times C_{12}$
Minimal over-subgroups:$C_{15}^2:C_{15}$$C_5^3\times C_3:S_3$$C_3^2\times C_5^2:D_5$$C_5^3:(C_3:S_3)$
Maximal under-subgroups:$C_5^2\times C_{15}$$C_5^2\times C_{15}$$C_{15}^2$$C_{15}^2$$C_{15}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^2:(C_6\times F_5)$