Properties

Label 27000.b.120.d1
Order $ 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2$
Order: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $c^{10}d^{10}, b^{2}d^{12}, c^{3}d^{3}, d^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$W$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_5\times C_{15}^2$
Normalizer:$C_5^2:D_5.C_2\times C_3:S_3$
Normal closure:$C_5\times C_{15}^2$
Core:$C_3^2$
Minimal over-subgroups:$C_5\times C_{15}^2$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}:D_{15}$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times C_{15}$$C_3\times C_{15}$$C_3\times C_{15}$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$C_{15}^2:(C_6\times F_5)$