Subgroup ($H$) information
| Description: | $C_{15}^2$ |
| Order: | \(225\)\(\medspace = 3^{2} \cdot 5^{2} \) |
| Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
| Generators: |
$c^{10}d^{10}, b^{2}d^{12}, c^{3}d^{3}, d^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Ambient group ($G$) information
| Description: | $C_{15}^2:(C_6\times F_5)$ |
| Order: | \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3)\times \GL(2,5)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \) |
| $W$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $24$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | $0$ |
| Projective image | $C_{15}^2:(C_6\times F_5)$ |