Subgroup ($H$) information
Description: | $C_{15}^2:C_{15}$ |
Order: | \(3375\)\(\medspace = 3^{3} \cdot 5^{3} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(15\)\(\medspace = 3 \cdot 5 \) |
Generators: |
$a^{4}, c^{3}d^{3}, d^{3}, c^{10}d^{5}, d^{10}, b^{2}c^{3}d^{12}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
Description: | $C_{15}^2:(C_6\times F_5)$ |
Order: | \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_4\times C_5^2.C_3^3.C_{12}.C_2^3$ |
$W$ | $S_3\times C_5^2:C_{12}$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{15}^2:(C_6\times F_5)$ |