Properties

Label 27000.b.8.a1
Order $ 3^{3} \cdot 5^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_{15}$
Order: \(3375\)\(\medspace = 3^{3} \cdot 5^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $a^{4}, c^{3}d^{3}, d^{3}, c^{10}d^{5}, d^{10}, b^{2}c^{3}d^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_4\times C_5^2.C_3^3.C_{12}.C_2^3$
$W$$S_3\times C_5^2:C_{12}$, of order \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$C_{15}^2:(C_6\times F_5)$
Complements:$C_2\times C_4$
Minimal over-subgroups:$C_{15}^2:C_{30}$$(C_5\times C_{15}^2):C_6$$(C_5\times C_{15}^2):C_6$
Maximal under-subgroups:$C_5\times C_{15}^2$$C_5^3:C_3^2$$C_5^3:C_3^2$$C_{15}^2:C_3$$C_5\times \He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}^2:(C_6\times F_5)$