Properties

Label 2700.q.90.a1.b1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_5$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{3}, d^{3}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_{12}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_3\times S_3$
Normalizer:$C_{15}:D_6$
Normal closure:$C_{15}:D_5$
Core:$C_3$
Minimal over-subgroups:$C_{15}:D_5$$C_3^2\times D_5$$C_3\times D_{10}$
Maximal under-subgroups:$C_{15}$$D_5$$C_6$
Autjugate subgroups:2700.q.90.a1.a1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$0$
Projective image$(C_5\times C_{15}):D_6$