Properties

Label 2700.q.30.a1.b1
Order $ 2 \cdot 3^{2} \cdot 5 $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_5$
Order: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{3}, c^{10}, d^{3}, c^{10}d^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_{12}.C_2^3$
$\operatorname{Aut}(H)$ $F_5\times \GL(2,3)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_{15}:D_6$
Normal closure:$C_{15}^2:C_2$
Core:$C_3^2$
Minimal over-subgroups:$C_{15}^2:C_2$$C_{15}:D_6$
Maximal under-subgroups:$C_3\times C_{15}$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$C_3\times C_6$
Autjugate subgroups:2700.q.30.a1.a1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$0$
Projective image$(C_5\times C_{15}):D_6$