Properties

Label 2700.q.18.a1.a1
Order $ 2 \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_5$
Order: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{3}, c^{3}d^{6}, d^{3}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:D_6$
Order: \(2700\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3:S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_{12}.C_2^3$
$\operatorname{Aut}(H)$ $(C_5\times C_{10}):\GL(2,5)$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{25}:C_2^2$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_5^2:D_6$, of order \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_{15}^2:D_6$
Minimal over-subgroups:$C_{15}^2:C_2$$C_3\times C_5^2:C_6$$C_3\times C_5^2:C_6$$C_3\times C_5^2:C_6$$C_3\times D_5^2$
Maximal under-subgroups:$C_5\times C_{15}$$C_5:D_5$$C_3\times D_5$$C_3\times D_5$

Other information

Möbius function$-27$
Projective image$(C_5\times C_{15}):D_6$