Properties

Label 23328.hd.18.h1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,5,2)(4,7)(6,8), (2,5)(3,9)(4,6)(7,8)(10,18)(11,16)(14,17)(20,21), (1,2,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_3^3\times C_6^2):S_4$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^4.D_6^2$
$\operatorname{Aut}(H)$ $C_3:S_3.(S_3\times A_4).C_2^5$
$W$$C_6:S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2:S_3^2$
Normal closure:$(C_3^3\times C_6^2):S_4$
Core:$C_6^2$
Minimal over-subgroups:$C_3^4.(C_6\times D_4)$
Maximal under-subgroups:$C_3^4:C_2^3$$S_3\times C_3^2:C_{12}$$C_3^4:D_4$$C_3^3:D_{12}$$C_3:C_6^3$$C_3^4:D_4$$C_3^4:D_4$$C_6^3:C_2$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3^2\times C_6^2):S_4$