Properties

Label 23328.hd.6.e1
Order $ 2^{4} \cdot 3^{5} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: not computed
Generators: $\langle(4,9,7)(10,14,11)(12,15,13)(16,18,17), (2,5)(3,9)(4,6)(7,8)(10,18)(11,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(C_3^3\times C_6^2):S_4$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^4.D_6^2$
$\operatorname{Aut}(H)$ not computed
$W$$C_2\times C_3^3:D_{12}$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3^3.C_6^2.C_2^3$
Normal closure:$(C_3^3\times C_6^2):S_4$
Core:$C_3^3\times C_6^2$
Minimal over-subgroups:$C_3^3.C_6^2.C_2^3$
Maximal under-subgroups:$C_3^5:C_2^3$$C_3^3:(S_3\times C_{12})$$C_3^4:D_{12}$$C_3^2:C_6^3$$C_3^5:D_4$$C_6^2:S_3^2$$C_6^2:S_3^2$$C_6^2:S_3^2$$C_6^2:S_3^2$$C_6^2:S_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3^2\times C_6^2):S_4$