Properties

Label 23328.hd.648.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(19,22)(20,21), (10,15,16)(11,12,17)(13,18,14), (10,14,11)(12,15,13)(16,18,17), (19,20)(21,22)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $(C_3^3\times C_6^2):S_4$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^4.D_6^2$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_3^5.C_2^4$
Normalizer:$(C_3^3\times C_6^2):S_4$
Complements:$C_3^3:S_4$
Minimal over-subgroups:$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_3^2:A_4$$C_2\times C_6^2$$C_6\wr C_2$
Maximal under-subgroups:$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$324$
Projective image$(C_3^2\times C_6^2):S_4$