Subgroup ($H$) information
| Description: | $C_6^2$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(19,22)(20,21), (10,15,16)(11,12,17)(13,18,14), (10,14,11)(12,15,13)(16,18,17), (19,20)(21,22)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.
Ambient group ($G$) information
| Description: | $(C_3^3\times C_6^2):S_4$ |
| Order: | \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3^3:S_4$ |
| Order: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_2^4.D_6^2$ |
| $\operatorname{Aut}(H)$ | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $324$ |
| Projective image | $(C_3^2\times C_6^2):S_4$ |