Properties

Label 23328.hd.36.cj1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(2,5)(3,7,6,4,8,9)(10,18)(11,16)(14,17)(20,21), (1,5)(4,7,9)(6,8)(19,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_3^3\times C_6^2):S_4$
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^4.D_6^2$
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^4:S_4$
Normal closure:$(C_3^3\times C_6^2):S_4$
Core:$C_3:S_3^2$
Minimal over-subgroups:$(C_3\times C_6^2):S_4$$C_3^4:S_4$
Maximal under-subgroups:$C_3^3:A_4$$C_3^2:D_{12}$$C_3^3:S_3$$S_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$0$
Projective image$(C_3^3\times C_6^2):S_4$