Properties

Label 2024.e.88.a1.a1
Order $ 23 $
Index $ 2^{3} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{23}$
Order: \(23\)
Index: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(23\)
Generators: $c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $23$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2^2\times F_{23}$
Order: \(2024\)\(\medspace = 2^{3} \cdot 11 \cdot 23 \)
Exponent: \(506\)\(\medspace = 2 \cdot 11 \cdot 23 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{22}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_{10}\times \GL(3,2)$, of order \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_{10}\times \GL(3,2)$, of order \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{23}$, of order \(12144\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \cdot 23 \)
$\operatorname{Aut}(H)$ $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(552\)\(\medspace = 2^{3} \cdot 3 \cdot 23 \)
$W$$C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{46}$
Normalizer:$C_2^2\times F_{23}$
Complements:$C_2^2\times C_{22}$
Minimal over-subgroups:$C_{23}:C_{11}$$C_{46}$$C_{46}$$C_{46}$$D_{23}$$D_{23}$$D_{23}$$D_{23}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$8$
Projective image$C_2^2\times F_{23}$