Properties

Label 2024.e.8.a1.a1
Order $ 11 \cdot 23 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{23}:C_{11}$
Order: \(253\)\(\medspace = 11 \cdot 23 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(253\)\(\medspace = 11 \cdot 23 \)
Generators: $a^{2}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 11$.

Ambient group ($G$) information

Description: $C_2^2\times F_{23}$
Order: \(2024\)\(\medspace = 2^{3} \cdot 11 \cdot 23 \)
Exponent: \(506\)\(\medspace = 2 \cdot 11 \cdot 23 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{23}$, of order \(12144\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \cdot 23 \)
$\operatorname{Aut}(H)$ $F_{23}$, of order \(506\)\(\medspace = 2 \cdot 11 \cdot 23 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{23}$, of order \(506\)\(\medspace = 2 \cdot 11 \cdot 23 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$F_{23}$, of order \(506\)\(\medspace = 2 \cdot 11 \cdot 23 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\times F_{23}$
Complements:$C_2^3$
Minimal over-subgroups:$C_{23}:C_{22}$$C_{23}:C_{22}$$C_{23}:C_{22}$$F_{23}$$F_{23}$$F_{23}$$F_{23}$
Maximal under-subgroups:$C_{23}$$C_{11}$

Other information

Möbius function$-8$
Projective image$C_2^2\times F_{23}$