Properties

Label 2024.e.44.a1.a1
Order $ 2 \cdot 23 $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{46}$
Order: \(46\)\(\medspace = 2 \cdot 23 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(46\)\(\medspace = 2 \cdot 23 \)
Generators: $c^{23}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,23$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2^2\times F_{23}$
Order: \(2024\)\(\medspace = 2^{3} \cdot 11 \cdot 23 \)
Exponent: \(506\)\(\medspace = 2 \cdot 11 \cdot 23 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Outer Automorphisms: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{23}$, of order \(12144\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \cdot 23 \)
$\operatorname{Aut}(H)$ $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
$\operatorname{res}(S)$$C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(184\)\(\medspace = 2^{3} \cdot 23 \)
$W$$C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{46}$
Normalizer:$C_2^2\times F_{23}$
Complements:$C_2\times C_{22}$ $C_2\times C_{22}$ $C_2\times C_{22}$ $C_2\times C_{22}$
Minimal over-subgroups:$C_{23}:C_{22}$$D_{46}$$D_{46}$$C_2\times C_{46}$
Maximal under-subgroups:$C_{23}$$C_2$
Autjugate subgroups:2024.e.44.a1.b12024.e.44.a1.c1

Other information

Möbius function$-2$
Projective image$C_2\times F_{23}$