Properties

Label 186624.dy.1.a1
Order $ 2^{8} \cdot 3^{6} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4.S_4^2:C_4$
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a^{3}, c^{3}, e^{3}g^{3}, b^{3}def^{3}g^{5}, d^{2}e, c^{2}d^{4}f^{5}g^{2}, g^{2}, a^{2}c^{4}d^{4}fg^{4}, f^{3}g^{3}, g^{3}, d^{3}f^{3}, b^{2}d^{3}, e^{2}g^{2}, e^{2}f^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), nonabelian, and a Hall subgroup. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^4.S_4^2:C_4$
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$W$$C_3^4.S_4^2:C_4$, of order \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^4.S_4^2:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4.S_4^2:C_4$