Properties

Label 186624.dy
Order \( 2^{8} \cdot 3^{6} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $26$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25), (1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25) >;
 
Copy content gap:G := Group( (2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25), (1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25) );
 
Copy content sage:G = PermutationGroup(['(2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25)', '(1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(228760400162208593538299992651860658876466558000611785281516494381024918340786395067823555440678564860749804917312755185999543621618718705092193461675052837799983905787922831533645888587761321074395252733459363224594575578857301995796949331503358132095063947904387887721355461525819533714949792452372872961448057225279516081591727867636752000966551127381,186624)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13;
 

Group information

Description:$C_3^4.S_4^2:C_4$
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 3399 6560 26712 42528 7776 84096 15552 186624
Conjugacy classes   1 11 15 14 64 2 39 2 148
Divisions 1 11 15 11 64 1 37 1 141
Autjugacy classes 1 11 14 11 55 1 32 1 126

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 6 8 9 12 16 18 24 36 48 72 144
Irr. complex chars.   8 2 16 8 8 8 28 2 2 22 24 5 12 3 148
Irr. rational chars. 4 4 14 8 9 4 28 2 4 22 20 5 14 3 141

Minimal presentations

Permutation degree:$26$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 12 12
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid c^{6}=d^{6}=e^{6}=f^{6}=g^{6}=[c,f]=[d,g]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 28, 1823823, 658058, 2500276, 114, 7500419, 2722065, 3069, 1792844, 5343258, 1773692, 835636, 200, 7391333, 945523, 2914161, 327143, 15843078, 8601284, 3171706, 1547076, 195278, 324946, 286, 15343111, 8047893, 2290211, 923377, 313215, 295085, 16166312, 1251958, 544356, 430984, 16724, 7288, 372, 8951049, 241943, 120997, 745985, 17631162, 10711032, 831638, 143314, 44922, 458, 1744523, 7257625, 508071, 88799, 79741, 11479116, 5700266, 7095856, 239216, 473464, 544, 24724237, 12192795, 6096425]); a,b,c,d,e,f,g := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2"]);
 
Copy content gap:G := PcGroupCode(228760400162208593538299992651860658876466558000611785281516494381024918340786395067823555440678564860749804917312755185999543621618718705092193461675052837799983905787922831533645888587761321074395252733459363224594575578857301995796949331503358132095063947904387887721355461525819533714949792452372872961448057225279516081591727867636752000966551127381,186624); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(228760400162208593538299992651860658876466558000611785281516494381024918340786395067823555440678564860749804917312755185999543621618718705092193461675052837799983905787922831533645888587761321074395252733459363224594575578857301995796949331503358132095063947904387887721355461525819533714949792452372872961448057225279516081591727867636752000966551127381,186624)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(228760400162208593538299992651860658876466558000611785281516494381024918340786395067823555440678564860749804917312755185999543621618718705092193461675052837799983905787922831533645888587761321074395252733459363224594575578857301995796949331503358132095063947904387887721355461525819533714949792452372872961448057225279516081591727867636752000966551127381,186624)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13;
 
Permutation group:Degree $26$ $\langle(2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25), (1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25), (1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25) >;
 
Copy content gap:G := Group( (2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25), (1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25) );
 
Copy content sage:G = PermutationGroup(['(2,3,5)(4,7)(8,12,10)(9,13)(11,14,17)(16,18)(19,20,22)(23,25)', '(1,2,4,8)(3,6,10,15,12,16,5,9,14,18,17,13)(7,11)(19,21)(20,23,22,24,26,25)'])
 
Transitive group: 36T23942 36T23943 36T23944 36T23945 all 8
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_6^4$ . $(S_3^2:C_4)$ $C_3^4$ . $(S_4^2:C_4)$ $(C_6^4.C_3.C_6)$ . $D_4$ (2) $(C_3^4.S_4^2:C_4)$ . $C_1$ all 20

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 7404889 subgroups in 22743 conjugacy classes, 22 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^4.S_4^2:C_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^4.C_3^4.C_3.C_6$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^2$ $G/\Phi \simeq$ $(C_3^2\times S_4^2):C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_6^4$ $G/\operatorname{Fit} \simeq$ $S_3^2:C_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^4.S_4^2:C_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^2\times C_6^2$ $G/\operatorname{soc} \simeq$ $(C_3^2\times S_3^2):C_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4^2:C_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $\He_3^2$

Subgroup diagram and profile

Series

Derived series $C_3^4.S_4^2:C_4$ $\rhd$ $C_2^4.C_3^4.C_3.C_6$ $\rhd$ $C_3^2\times A_4^2$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^4.S_4^2:C_4$ $\rhd$ $C_6^4:(C_6.D_6)$ $\rhd$ $C_6^4.C_3.D_6$ $\rhd$ $C_6^4.C_3.C_6$ $\rhd$ $(C_2\times C_6^3).C_3^3$ $\rhd$ $C_3^2\times A_4^2$ $\rhd$ $C_2^2\times C_6^2$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^4.S_4^2:C_4$ $\rhd$ $C_2^4.C_3^4.C_3.C_6$ $\rhd$ $(C_2\times C_6^3).C_3^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 11 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $148 \times 148$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $141 \times 141$ rational character table (warning: may be slow to load).