Subgroup ($H$) information
| Description: | $C_4^2:C_2^2$ |
| Order: | \(64\)\(\medspace = 2^{6} \) |
| Index: | \(27\)\(\medspace = 3^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$a, b, c^{3}, e^{3}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2^3.S_3^3$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_2\times S_3\times S_4\times D_6$ |
| $\operatorname{Aut}(H)$ | $C_2^7:D_4$, of order \(1024\)\(\medspace = 2^{10} \) |
| $\operatorname{res}(S)$ | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $27$ |
| Möbius function | $-1$ |
| Projective image | $S_4\times S_3^2$ |