Subgroup ($H$) information
| Description: | $C_4^2:D_6$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a, d^{3}, b^{2}, b, d^{2}, c^{3}, e^{3}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_2^3.S_3^3$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_2\times S_3\times S_4\times D_6$ |
| $\operatorname{Aut}(H)$ | $C_2^8\times S_3$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $\operatorname{res}(S)$ | $D_6\times C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ |
| Möbius function | $1$ |
| Projective image | $S_4\times S_3^2$ |