Properties

Label 1728.46346.9.c1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{3}, b^{2}, b, d^{2}, c^{3}, e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^3.S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2\times S_3\times S_4\times D_6$
$\operatorname{Aut}(H)$ $C_2^8\times S_3$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$D_6\times C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2:D_6$
Normal closure:$C_2^3.S_3^3$
Core:$C_2^2\times D_6$
Minimal over-subgroups:$C_2^2.D_6^2$$(C_4\times S_3):S_4$
Maximal under-subgroups:$D_{12}:C_2^2$$D_6.D_4$$D_6.D_4$$C_4^2:S_3$$D_6:D_4$$C_{12}:D_4$$C_4\times D_{12}$$D_6:Q_8$$D_6:D_4$$C_2^2:D_{12}$$C_{12}:C_2^3$$C_2^3.D_6$$D_4\times C_{12}$$C_{12}:D_4$$C_2^3.D_6$$C_4^2:C_2^2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$1$
Projective image$S_4\times S_3^2$