Properties

Label 1728.46346.54.a1.a1
Order $ 2^{5} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{3}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^3.S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2\times S_3\times S_4\times D_6$
$\operatorname{Aut}(H)$ $C_2\wr D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2:C_2^2$
Normal closure:$C_2^3.S_3^3$
Core:$C_2$
Minimal over-subgroups:$D_4:D_6$$D_{12}:C_2^2$$C_4^2:C_2^2$
Maximal under-subgroups:$C_2\times D_4$$C_2\times D_4$$C_2^2\times C_4$$C_2\times D_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2\times Q_8$$D_4:C_2$$D_4:C_2$$D_4:C_2$$D_4:C_2$

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$S_4\times S_3^2$