Subgroup ($H$) information
Description: | $C_7\times C_{119}$ |
Order: | \(833\)\(\medspace = 7^{2} \cdot 17 \) |
Index: | \(2\) |
Exponent: | \(119\)\(\medspace = 7 \cdot 17 \) |
Generators: |
$a^{2}, b^{85}, b^{7}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, maximal, a semidirect factor, abelian (hence metabelian and an A-group), a Hall subgroup, elementary for $p = 7$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $D_7\times C_{119}$ |
Order: | \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \) |
Exponent: | \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{48}\times F_7$ |
$\operatorname{Aut}(H)$ | $C_{16}\times C_6.\SO(3,7)$ |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_6\times C_{48}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(7\) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $D_7$ |