Subgroup ($H$) information
Description: | $C_{119}$ |
Order: | \(119\)\(\medspace = 7 \cdot 17 \) |
Index: | \(14\)\(\medspace = 2 \cdot 7 \) |
Exponent: | \(119\)\(\medspace = 7 \cdot 17 \) |
Generators: |
$a^{2}, b^{7}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 7,17$), hyperelementary, metacyclic, and a Z-group).
Ambient group ($G$) information
Description: | $D_7\times C_{119}$ |
Order: | \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \) |
Exponent: | \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $D_7$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Automorphism Group: | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_3$, of order \(3\) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{48}\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $D_7\times C_{119}$ | |
Normalizer: | $D_7\times C_{119}$ | |
Complements: | $D_7$ | |
Minimal over-subgroups: | $C_7\times C_{119}$ | $C_{238}$ |
Maximal under-subgroups: | $C_{17}$ | $C_7$ |
Other information
Möbius function | $7$ |
Projective image | $D_7$ |