Properties

Label 1666.6.34.a1.a1
Order $ 7^{2} $
Index $ 2 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2$
Order: \(49\)\(\medspace = 7^{2} \)
Index: \(34\)\(\medspace = 2 \cdot 17 \)
Exponent: \(7\)
Generators: $a^{2}, b^{85}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_7\times C_{119}$
Order: \(1666\)\(\medspace = 2 \cdot 7^{2} \cdot 17 \)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{48}\times F_7$
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(112\)\(\medspace = 2^{4} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\times C_{119}$
Normalizer:$D_7\times C_{119}$
Complements:$C_{34}$
Minimal over-subgroups:$C_7\times C_{119}$$C_7\times D_7$
Maximal under-subgroups:$C_7$$C_7$$C_7$$C_7$$C_7$

Other information

Möbius function$1$
Projective image$D_7\times C_{17}$