Properties

Label 1600.4723.2.b1.a1
Order $ 2^{5} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}\times C_{40}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a^{5}, c^{10}, c^{5}, a^{2}, b^{2}, c^{20}, c^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, and abelian (hence metabelian and an A-group).

Ambient group ($G$) information

Description: $C_{10}^2:\OD_{16}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7\times C_4\times F_5$
$\operatorname{Aut}(H)$ $C_2^3:A_4.C_2^3.C_2.S_5$
$\operatorname{res}(\operatorname{Aut}(G))$$C_{2}^{5} \times C_{4}^{2}$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{40}$
Normalizer:$C_{10}^2:\OD_{16}$
Complements:$C_2$
Minimal over-subgroups:$C_{10}^2:\OD_{16}$
Maximal under-subgroups:$C_2\times C_{10}\times C_{20}$$C_{10}\times C_{40}$$C_{10}\times C_{40}$$C_{10}\times C_{40}$$C_{10}\times C_{40}$$C_2^2\times C_{40}$$C_2^2\times C_{40}$$C_2^2\times C_{40}$$C_2^2\times C_{40}$

Other information

Möbius function$-1$
Projective image$C_2\times D_{10}$