Properties

Label 1600.4723.10.k1.a1
Order $ 2^{5} \cdot 5 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{40}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a^{5}, c^{20}, c^{5}, a^{2}c^{16}, b^{2}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{10}^2:\OD_{16}$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7\times C_4\times F_5$
$\operatorname{Aut}(H)$ $C_4\times C_2^4:S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_2^5\times C_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{40}$
Normalizer:$C_2\times C_{10}\times C_{40}$
Normal closure:$C_2\times C_{10}\times C_{40}$
Core:$C_2^2\times C_8$
Minimal over-subgroups:$C_2\times C_{10}\times C_{40}$
Maximal under-subgroups:$C_2^2\times C_{20}$$C_2\times C_{40}$$C_2\times C_{40}$$C_2\times C_{40}$$C_2\times C_{40}$$C_2\times C_{40}$$C_2\times C_{40}$$C_2^2\times C_8$
Autjugate subgroups:1600.4723.10.k1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{10}\times D_{10}$