Properties

Label 512.10493062
Order \( 2^{9} \)
Exponent \( 2^{2} \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{35} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 31 \)
Trans deg. not computed
Rank $7$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2}^{5} \times C_{4}^{2}$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism group:Group of order 1006568535490560
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 4
Elements 1 127 384 512
Conjugacy classes   1 127 384 512
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   512 512

Constructions

Rank: $7$
Inequivalent generating 7-tuples: not computed

Homology

Primary decomposition: $C_{2}^{5} \times C_{4}^{2}$

Subgroups

Center: $Z \simeq$ $C_{2}^{5} \times C_{4}^{2}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2}^{5} \times C_{4}^{2}$
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_2^7$
Fitting: $\operatorname{Fit} \simeq$ $C_{2}^{5} \times C_{4}^{2}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2}^{5} \times C_{4}^{2}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^7$ $G/S \simeq$ $C_2^2$