Properties

Label 15840.q.44.a1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,9)(3,7)(5,6)(10,11), (2,4,6,11)(7,8,10,9)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $C_2\times M_{11}$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 44T140.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$A_6.C_2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$A_6.C_2^2$
Normal closure:$M_{11}$
Core:$C_1$
Minimal over-subgroups:$C_2\times A_6$$A_6.C_2$$A_6.C_2$
Maximal under-subgroups:$A_5$$C_3^2:C_4$$S_4$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$0$
Projective image$C_2\times M_{11}$