Show commands: Magma
Group invariants
Abstract group: | $C_2\times M_{11}$ |
| |
Order: | $15840=2^{5} \cdot 3^{2} \cdot 5 \cdot 11$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $44$ |
| |
Transitive number $t$: | $140$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,18,6,9,27,13)(2,17,5,10,28,14)(3,20,7,11,25,16)(4,19,8,12,26,15)(21,37,44,22,38,43)(23,40,42,24,39,41)(29,35)(30,36)(31,33)(32,34)$, $(1,44,36,14,39,23,12,17,32,6,25)(2,43,35,13,40,24,11,18,31,5,26)(3,42,33,15,38,21,10,19,29,7,27)(4,41,34,16,37,22,9,20,30,8,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $7920$: $M_{11}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 11: $M_{11}$
Low degree siblings
22T26, 22T27, 24T12204Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{44}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{22}$ | $1$ | $2$ | $22$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)$ |
2B | $2^{16},1^{12}$ | $165$ | $2$ | $16$ | $( 1,10)( 2, 9)( 3,12)( 4,11)(13,37)(14,38)(15,39)(16,40)(21,33)(22,34)(23,36)(24,35)(25,42)(26,41)(27,44)(28,43)$ |
2C | $2^{22}$ | $165$ | $2$ | $22$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,17)(10,18)(11,19)(12,20)(21,30)(22,29)(23,31)(24,32)(25,26)(27,28)(33,40)(34,39)(35,38)(36,37)(41,42)(43,44)$ |
3A | $3^{12},1^{8}$ | $440$ | $3$ | $24$ | $( 1,12,27)( 2,11,28)( 3,10,25)( 4, 9,26)( 5,16,20)( 6,15,19)( 7,14,17)( 8,13,18)(21,36,44)(22,35,43)(23,33,42)(24,34,41)$ |
4A | $4^{8},2^{4},1^{4}$ | $990$ | $4$ | $28$ | $( 1,23,10,36)( 2,24, 9,35)( 3,21,12,33)( 4,22,11,34)( 5, 8)( 6, 7)(13,43,37,28)(14,44,38,27)(15,42,39,25)(16,41,40,26)(17,19)(18,20)$ |
4B | $4^{8},2^{6}$ | $990$ | $4$ | $30$ | $( 1,22,17,31)( 2,21,18,32)( 3,24,19,30)( 4,23,20,29)( 5, 7)( 6, 8)( 9,15,43,36)(10,16,44,35)(11,14,41,33)(12,13,42,34)(25,28)(26,27)(37,38)(39,40)$ |
5A | $5^{8},1^{4}$ | $1584$ | $5$ | $32$ | $( 1, 6,27,21,38)( 2, 5,28,22,37)( 3, 7,25,23,39)( 4, 8,26,24,40)( 9,31,13,34,18)(10,32,14,33,17)(11,30,16,35,20)(12,29,15,36,19)$ |
6A | $6^{6},2^{4}$ | $440$ | $6$ | $34$ | $( 1,30, 6, 2,29, 5)( 3,31, 7, 4,32, 8)( 9,25,41,10,26,42)(11,27,43,12,28,44)(13,14)(15,16)(17,34,39,18,33,40)(19,35,38,20,36,37)(21,22)(23,24)$ |
6B | $6^{4},3^{4},2^{4}$ | $1320$ | $6$ | $32$ | $( 1, 7,12,14,27,17)( 2, 8,11,13,28,18)( 3, 6,10,15,25,19)( 4, 5, 9,16,26,20)(21,44,36)(22,43,35)(23,42,33)(24,41,34)(29,38)(30,37)(31,40)(32,39)$ |
6C | $6^{6},2^{4}$ | $1320$ | $6$ | $34$ | $( 1,28,44, 2,27,43)( 3,26,42, 4,25,41)( 5,36,22,15,37,29)( 6,35,21,16,38,30)( 7,34,23,13,39,31)( 8,33,24,14,40,32)( 9,17)(10,18)(11,19)(12,20)$ |
8A1 | $8^{4},4^{2},2^{2}$ | $990$ | $8$ | $36$ | $( 1,37,23,28,10,13,36,43)( 2,38,24,27, 9,14,35,44)( 3,40,21,26,12,16,33,41)( 4,39,22,25,11,15,34,42)( 5,19, 8,17)( 6,20, 7,18)(29,31)(30,32)$ |
8A-1 | $8^{4},4^{2},2^{2}$ | $990$ | $8$ | $36$ | $( 1,43,36,13,10,28,23,37)( 2,44,35,14, 9,27,24,38)( 3,41,33,16,12,26,21,40)( 4,42,34,15,11,25,22,39)( 5,17, 8,19)( 6,18, 7,20)(29,31)(30,32)$ |
8B1 | $8^{4},4^{2},2^{2}$ | $990$ | $8$ | $36$ | $( 1,10,15,32,17,44,36,21)( 2, 9,16,31,18,43,35,22)( 3,12,14,29,19,42,33,23)( 4,11,13,30,20,41,34,24)( 5, 8)( 6, 7)(25,38,27,39)(26,37,28,40)$ |
8B-1 | $8^{4},4^{2},2^{2}$ | $990$ | $8$ | $36$ | $( 1,21,36,44,17,32,15,10)( 2,22,35,43,18,31,16, 9)( 3,23,33,42,19,29,14,12)( 4,24,34,41,20,30,13,11)( 5, 8)( 6, 7)(25,39,27,38)(26,40,28,37)$ |
10A | $10^{4},2^{2}$ | $1584$ | $10$ | $38$ | $( 1,22, 6,37,27, 2,21, 5,38,28)( 3,24, 7,40,25, 4,23, 8,39,26)( 9,33,31,17,13,10,34,32,18,14)(11,36,30,19,16,12,35,29,20,15)(41,42)(43,44)$ |
11A1 | $11^{4}$ | $720$ | $11$ | $40$ | $( 1,25,44,17,32,36,39,23,14,12, 6)( 2,26,43,18,31,35,40,24,13,11, 5)( 3,27,42,19,29,33,38,21,15,10, 7)( 4,28,41,20,30,34,37,22,16, 9, 8)$ |
11A-1 | $11^{4}$ | $720$ | $11$ | $40$ | $( 1, 6,12,14,23,39,36,32,17,44,25)( 2, 5,11,13,24,40,35,31,18,43,26)( 3, 7,10,15,21,38,33,29,19,42,27)( 4, 8, 9,16,22,37,34,30,20,41,28)$ |
22A1 | $22^{2}$ | $720$ | $22$ | $42$ | $( 1,40,25,24,44,13,17,11,32, 5,36, 2,39,26,23,43,14,18,12,31, 6,35)( 3,37,27,22,42,16,19, 9,29, 8,33, 4,38,28,21,41,15,20,10,30, 7,34)$ |
22A-1 | $22^{2}$ | $720$ | $22$ | $42$ | $( 1,35, 6,31,12,18,14,43,23,26,39, 2,36, 5,32,11,17,13,44,24,25,40)( 3,34, 7,30,10,20,15,41,21,28,38, 4,33, 8,29, 9,19,16,42,22,27,37)$ |
Malle's constant $a(G)$: $1/16$
Character table
1A | 2A | 2B | 2C | 3A | 4A | 4B | 5A | 6A | 6B | 6C | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | 11A1 | 11A-1 | 22A1 | 22A-1 | ||
Size | 1 | 1 | 165 | 165 | 440 | 990 | 990 | 1584 | 440 | 1320 | 1320 | 990 | 990 | 990 | 990 | 1584 | 720 | 720 | 720 | 720 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2B | 2B | 5A | 3A | 3A | 3A | 4A | 4A | 4A | 4A | 5A | 11A-1 | 11A1 | 11A1 | 11A-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A | 4B | 5A | 2A | 2B | 2C | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | 11A1 | 11A-1 | 22A1 | 22A-1 | |
5 P | 1A | 2A | 2B | 2C | 3A | 4A | 4B | 1A | 6A | 6B | 6C | 8A-1 | 8A1 | 8B-1 | 8B1 | 2A | 11A1 | 11A-1 | 22A1 | 22A-1 | |
11 P | 1A | 2A | 2B | 2C | 3A | 4A | 4B | 5A | 6A | 6B | 6C | 8A1 | 8A-1 | 8B1 | 8B-1 | 10A | 1A | 1A | 2A | 2A | |
Type | |||||||||||||||||||||
15840.q.1a | R | ||||||||||||||||||||
15840.q.1b | R | ||||||||||||||||||||
15840.q.10a | R | ||||||||||||||||||||
15840.q.10b | R | ||||||||||||||||||||
15840.q.10c1 | C | ||||||||||||||||||||
15840.q.10c2 | C | ||||||||||||||||||||
15840.q.10d1 | C | ||||||||||||||||||||
15840.q.10d2 | C | ||||||||||||||||||||
15840.q.11a | R | ||||||||||||||||||||
15840.q.11b | R | ||||||||||||||||||||
15840.q.16a1 | C | ||||||||||||||||||||
15840.q.16a2 | C | ||||||||||||||||||||
15840.q.16b1 | C | ||||||||||||||||||||
15840.q.16b2 | C | ||||||||||||||||||||
15840.q.44a | R | ||||||||||||||||||||
15840.q.44b | R | ||||||||||||||||||||
15840.q.45a | R | ||||||||||||||||||||
15840.q.45b | R | ||||||||||||||||||||
15840.q.55a | R | ||||||||||||||||||||
15840.q.55b | R |
Regular extensions
Data not computed