Properties

Label 44T140
44T140 1 18 1->18 44 1->44 2 17 2->17 43 2->43 3 20 3->20 42 3->42 4 19 4->19 41 4->41 5 10 5->10 26 5->26 6 9 6->9 25 6->25 7 11 7->11 27 7->27 8 12 8->12 28 8->28 9->20 9->27 10->19 10->28 11->18 11->25 12->17 12->26 13 13->1 40 13->40 14 14->2 39 14->39 15 15->4 38 15->38 16 16->3 37 16->37 17->5 32 17->32 18->6 31 18->31 19->8 29 19->29 20->7 30 20->30 21 21->10 21->37 22 22->9 22->38 23 23->12 23->40 24 24->11 24->39 25->1 25->16 26->2 26->15 27->3 27->13 28->4 28->14 29->7 35 29->35 30->8 36 30->36 31->5 33 31->33 32->6 34 32->34 33->15 34->16 35->13 36->14 37->22 37->44 38->21 38->43 39->23 39->41 40->24 40->42 41->23 41->34 42->24 42->33 43->21 43->35 44->22 44->36
Degree $44$
Order $15840$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $C_2\times M_{11}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(44, 140);
 

Group invariants

Abstract group:  $C_2\times M_{11}$
Copy content magma:IdentifyGroup(G);
 
Order:  $15840=2^{5} \cdot 3^{2} \cdot 5 \cdot 11$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $44$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $140$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,18,6,9,27,13)(2,17,5,10,28,14)(3,20,7,11,25,16)(4,19,8,12,26,15)(21,37,44,22,38,43)(23,40,42,24,39,41)(29,35)(30,36)(31,33)(32,34)$, $(1,44,36,14,39,23,12,17,32,6,25)(2,43,35,13,40,24,11,18,31,5,26)(3,42,33,15,38,21,10,19,29,7,27)(4,41,34,16,37,22,9,20,30,8,28)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$7920$:  $M_{11}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 11: $M_{11}$

Degree 22: $M_{11}$, 22T26, 22T27

Low degree siblings

22T26, 22T27, 24T12204

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{44}$ $1$ $1$ $0$ $()$
2A $2^{22}$ $1$ $2$ $22$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)$
2B $2^{16},1^{12}$ $165$ $2$ $16$ $( 1,10)( 2, 9)( 3,12)( 4,11)(13,37)(14,38)(15,39)(16,40)(21,33)(22,34)(23,36)(24,35)(25,42)(26,41)(27,44)(28,43)$
2C $2^{22}$ $165$ $2$ $22$ $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,17)(10,18)(11,19)(12,20)(21,30)(22,29)(23,31)(24,32)(25,26)(27,28)(33,40)(34,39)(35,38)(36,37)(41,42)(43,44)$
3A $3^{12},1^{8}$ $440$ $3$ $24$ $( 1,12,27)( 2,11,28)( 3,10,25)( 4, 9,26)( 5,16,20)( 6,15,19)( 7,14,17)( 8,13,18)(21,36,44)(22,35,43)(23,33,42)(24,34,41)$
4A $4^{8},2^{4},1^{4}$ $990$ $4$ $28$ $( 1,23,10,36)( 2,24, 9,35)( 3,21,12,33)( 4,22,11,34)( 5, 8)( 6, 7)(13,43,37,28)(14,44,38,27)(15,42,39,25)(16,41,40,26)(17,19)(18,20)$
4B $4^{8},2^{6}$ $990$ $4$ $30$ $( 1,22,17,31)( 2,21,18,32)( 3,24,19,30)( 4,23,20,29)( 5, 7)( 6, 8)( 9,15,43,36)(10,16,44,35)(11,14,41,33)(12,13,42,34)(25,28)(26,27)(37,38)(39,40)$
5A $5^{8},1^{4}$ $1584$ $5$ $32$ $( 1, 6,27,21,38)( 2, 5,28,22,37)( 3, 7,25,23,39)( 4, 8,26,24,40)( 9,31,13,34,18)(10,32,14,33,17)(11,30,16,35,20)(12,29,15,36,19)$
6A $6^{6},2^{4}$ $440$ $6$ $34$ $( 1,30, 6, 2,29, 5)( 3,31, 7, 4,32, 8)( 9,25,41,10,26,42)(11,27,43,12,28,44)(13,14)(15,16)(17,34,39,18,33,40)(19,35,38,20,36,37)(21,22)(23,24)$
6B $6^{4},3^{4},2^{4}$ $1320$ $6$ $32$ $( 1, 7,12,14,27,17)( 2, 8,11,13,28,18)( 3, 6,10,15,25,19)( 4, 5, 9,16,26,20)(21,44,36)(22,43,35)(23,42,33)(24,41,34)(29,38)(30,37)(31,40)(32,39)$
6C $6^{6},2^{4}$ $1320$ $6$ $34$ $( 1,28,44, 2,27,43)( 3,26,42, 4,25,41)( 5,36,22,15,37,29)( 6,35,21,16,38,30)( 7,34,23,13,39,31)( 8,33,24,14,40,32)( 9,17)(10,18)(11,19)(12,20)$
8A1 $8^{4},4^{2},2^{2}$ $990$ $8$ $36$ $( 1,37,23,28,10,13,36,43)( 2,38,24,27, 9,14,35,44)( 3,40,21,26,12,16,33,41)( 4,39,22,25,11,15,34,42)( 5,19, 8,17)( 6,20, 7,18)(29,31)(30,32)$
8A-1 $8^{4},4^{2},2^{2}$ $990$ $8$ $36$ $( 1,43,36,13,10,28,23,37)( 2,44,35,14, 9,27,24,38)( 3,41,33,16,12,26,21,40)( 4,42,34,15,11,25,22,39)( 5,17, 8,19)( 6,18, 7,20)(29,31)(30,32)$
8B1 $8^{4},4^{2},2^{2}$ $990$ $8$ $36$ $( 1,10,15,32,17,44,36,21)( 2, 9,16,31,18,43,35,22)( 3,12,14,29,19,42,33,23)( 4,11,13,30,20,41,34,24)( 5, 8)( 6, 7)(25,38,27,39)(26,37,28,40)$
8B-1 $8^{4},4^{2},2^{2}$ $990$ $8$ $36$ $( 1,21,36,44,17,32,15,10)( 2,22,35,43,18,31,16, 9)( 3,23,33,42,19,29,14,12)( 4,24,34,41,20,30,13,11)( 5, 8)( 6, 7)(25,39,27,38)(26,40,28,37)$
10A $10^{4},2^{2}$ $1584$ $10$ $38$ $( 1,22, 6,37,27, 2,21, 5,38,28)( 3,24, 7,40,25, 4,23, 8,39,26)( 9,33,31,17,13,10,34,32,18,14)(11,36,30,19,16,12,35,29,20,15)(41,42)(43,44)$
11A1 $11^{4}$ $720$ $11$ $40$ $( 1,25,44,17,32,36,39,23,14,12, 6)( 2,26,43,18,31,35,40,24,13,11, 5)( 3,27,42,19,29,33,38,21,15,10, 7)( 4,28,41,20,30,34,37,22,16, 9, 8)$
11A-1 $11^{4}$ $720$ $11$ $40$ $( 1, 6,12,14,23,39,36,32,17,44,25)( 2, 5,11,13,24,40,35,31,18,43,26)( 3, 7,10,15,21,38,33,29,19,42,27)( 4, 8, 9,16,22,37,34,30,20,41,28)$
22A1 $22^{2}$ $720$ $22$ $42$ $( 1,40,25,24,44,13,17,11,32, 5,36, 2,39,26,23,43,14,18,12,31, 6,35)( 3,37,27,22,42,16,19, 9,29, 8,33, 4,38,28,21,41,15,20,10,30, 7,34)$
22A-1 $22^{2}$ $720$ $22$ $42$ $( 1,35, 6,31,12,18,14,43,23,26,39, 2,36, 5,32,11,17,13,44,24,25,40)( 3,34, 7,30,10,20,15,41,21,28,38, 4,33, 8,29, 9,19,16,42,22,27,37)$

Malle's constant $a(G)$:     $1/16$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 4A 4B 5A 6A 6B 6C 8A1 8A-1 8B1 8B-1 10A 11A1 11A-1 22A1 22A-1
Size 1 1 165 165 440 990 990 1584 440 1320 1320 990 990 990 990 1584 720 720 720 720
2 P 1A 1A 1A 1A 3A 2B 2B 5A 3A 3A 3A 4A 4A 4A 4A 5A 11A-1 11A1 11A1 11A-1
3 P 1A 2A 2B 2C 1A 4A 4B 5A 2A 2B 2C 8A1 8A-1 8B1 8B-1 10A 11A1 11A-1 22A1 22A-1
5 P 1A 2A 2B 2C 3A 4A 4B 1A 6A 6B 6C 8A-1 8A1 8B-1 8B1 2A 11A1 11A-1 22A1 22A-1
11 P 1A 2A 2B 2C 3A 4A 4B 5A 6A 6B 6C 8A1 8A-1 8B1 8B-1 10A 1A 1A 2A 2A
Type
15840.q.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15840.q.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15840.q.10a R 10 10 2 2 1 2 2 0 1 1 1 0 0 0 0 0 1 1 1 1
15840.q.10b R 10 10 2 2 1 2 2 0 1 1 1 0 0 0 0 0 1 1 1 1
15840.q.10c1 C 10 10 2 2 1 0 0 0 1 1 1 ζ8ζ83 ζ8+ζ83 ζ8ζ83 ζ8+ζ83 0 1 1 1 1
15840.q.10c2 C 10 10 2 2 1 0 0 0 1 1 1 ζ8+ζ83 ζ8ζ83 ζ8+ζ83 ζ8ζ83 0 1 1 1 1
15840.q.10d1 C 10 10 2 2 1 0 0 0 1 1 1 ζ8ζ83 ζ8ζ83 ζ8+ζ83 ζ8+ζ83 0 1 1 1 1
15840.q.10d2 C 10 10 2 2 1 0 0 0 1 1 1 ζ8+ζ83 ζ8+ζ83 ζ8ζ83 ζ8ζ83 0 1 1 1 1
15840.q.11a R 11 11 3 3 2 1 1 1 2 0 0 1 1 1 1 1 0 0 0 0
15840.q.11b R 11 11 3 3 2 1 1 1 2 0 0 1 1 1 1 1 0 0 0 0
15840.q.16a1 C 16 16 0 0 2 0 0 1 2 0 0 0 0 0 0 1 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115
15840.q.16a2 C 16 16 0 0 2 0 0 1 2 0 0 0 0 0 0 1 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115
15840.q.16b1 C 16 16 0 0 2 0 0 1 2 0 0 0 0 0 0 1 ζ1121ζ11ζ113ζ114ζ115 ζ112+ζ11+ζ113+ζ114+ζ115 ζ112ζ11ζ113ζ114ζ115 ζ112+1+ζ11+ζ113+ζ114+ζ115
15840.q.16b2 C 16 16 0 0 2 0 0 1 2 0 0 0 0 0 0 1 ζ112+ζ11+ζ113+ζ114+ζ115 ζ1121ζ11ζ113ζ114ζ115 ζ112+1+ζ11+ζ113+ζ114+ζ115 ζ112ζ11ζ113ζ114ζ115
15840.q.44a R 44 44 4 4 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0
15840.q.44b R 44 44 4 4 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0
15840.q.45a R 45 45 3 3 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1
15840.q.45b R 45 45 3 3 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1
15840.q.55a R 55 55 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0
15840.q.55b R 55 55 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed