Properties

Label 1584.67.99.a1.a1
Order $ 2^{4} $
Index $ 3^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{99}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_{792}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{60}.C_2^5$
$\operatorname{Aut}(H)$ $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_8$
Normal closure:$D_{792}$
Core:$C_8$
Minimal over-subgroups:$D_{88}$$D_{24}$
Maximal under-subgroups:$C_8$$D_4$$D_4$

Other information

Number of subgroups in this conjugacy class$99$
Möbius function$0$
Projective image$D_{396}$