Properties

Label 1584.67.9.a1.a1
Order $ 2^{4} \cdot 11 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{88}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a, b^{594}, b^{396}, b^{99}, b^{72}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{792}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{60}.C_2^5$
$\operatorname{Aut}(H)$ $D_8:C_2\times F_{11}$, of order \(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_8:C_2\times F_{11}$, of order \(3520\)\(\medspace = 2^{6} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{44}$, of order \(88\)\(\medspace = 2^{3} \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{88}$
Normal closure:$D_{792}$
Core:$C_{88}$
Minimal over-subgroups:$D_{264}$
Maximal under-subgroups:$C_{88}$$D_{44}$$D_{44}$$D_8$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$D_{396}$