Properties

Label 1584.67.198.a1.a1
Order $ 2^{3} $
Index $ 2 \cdot 3^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $b^{99}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $D_{792}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_{99}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Automorphism Group: $D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{60}.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(47520\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{792}$
Normalizer:$D_{792}$
Complements:$D_{99}$ $D_{99}$
Minimal over-subgroups:$C_{88}$$C_{24}$$D_8$
Maximal under-subgroups:$C_4$

Other information

Möbius function$0$
Projective image$D_{396}$