Subgroup ($H$) information
| Description: | $D_{99}$ |
| Order: | \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \) |
| Generators: |
$ab^{769}, b^{72}, b^{528}, b^{704}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $D_{792}$ |
| Order: | \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \) |
| Exponent: | \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{99}.C_{60}.C_2^5$ |
| $\operatorname{Aut}(H)$ | $D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \) |
| $\operatorname{res}(S)$ | $D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_{99}$, of order \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \) |
Related subgroups
| Centralizer: | $C_2$ | ||
| Normalizer: | $D_{198}$ | ||
| Normal closure: | $D_{396}$ | ||
| Core: | $C_{99}$ | ||
| Minimal over-subgroups: | $D_{198}$ | ||
| Maximal under-subgroups: | $C_{99}$ | $D_{33}$ | $D_9$ |
| Autjugate subgroups: | 1584.67.8.b1.a1 |
Other information
| Number of subgroups in this conjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $D_{792}$ |