Properties

Label 1584.67.2.b1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{792}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Index: \(2\)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Generators: $b^{99}, b^{396}, b^{72}, b^{198}, b^{704}, b^{528}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, and cyclic (hence abelian, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{792}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{60}.C_2^5$
$\operatorname{Aut}(H)$ $C_2^3\times C_{30}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times C_{30}$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{792}$
Normalizer:$D_{792}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{792}$
Maximal under-subgroups:$C_{396}$$C_{264}$$C_{72}$

Other information

Möbius function$-1$
Projective image$D_{396}$