Properties

Label 1568.466.28.d1
Order $ 2^{3} \cdot 7 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{28}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ab^{7}, c, b^{4}, d^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{14}^2.D_4$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.(C_2^3\times C_{12}).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2\times C_{28}$
Normalizer:$Q_8\times C_{14}$
Normal closure:$C_{28}.D_{14}$
Core:$C_2\times C_{14}$
Minimal over-subgroups:$C_{14}:C_{28}$$Q_8\times C_{14}$
Maximal under-subgroups:$C_2\times C_{14}$$C_{28}$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed