Subgroup ($H$) information
Description: | $C_{28}$ |
Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Index: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$ab^{4}d^{7}, b^{4}, d^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{14}^2.D_4$ |
Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^2.(C_2^3\times C_{12}).C_6.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{W}$ | \(2\) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $56$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | not computed |