Properties

Label 1568.466.4.d1
Order $ 2^{3} \cdot 7^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}:C_{28}$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ab^{7}, c, b^{4}, d^{7}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{14}^2.D_4$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.(C_2^3\times C_{12}).C_6.C_2^4$
$\operatorname{Aut}(H)$ $D_{28}:C_6^2$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_{28}.D_{14}$
Normal closure:$C_{28}.D_{14}$
Core:$C_{14}^2$
Minimal over-subgroups:$C_{28}.D_{14}$
Maximal under-subgroups:$C_{14}^2$$C_7:C_{28}$$C_2\times C_{28}$$C_{14}:C_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed