Properties

Label 15552.dp.16.a1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4.A_4$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{2}, d^{3}, d^{2}e^{2}, c^{16}d^{3}e^{3}, e^{3}, e^{2}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^4.D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4.C_6^2.C_3^3.D_6$
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^4.D_6$
Complements:$C_2\times D_4$ $C_2\times D_4$ $C_2\times D_4$ $C_2\times D_4$
Minimal over-subgroups:$C_6^3.C_3^2$$C_3^4.S_4$$C_6^3.C_3^2$$C_3^3.(C_6\times A_4)$$C_3^4.S_4$$C_3^4.S_4$
Maximal under-subgroups:$C_3^2\times C_6^2$$C_3^3.A_4$$C_6^2:C_9$$C_3^3.A_4$$C_6^2:C_9$$C_6^2:C_9$$C_6^2:C_9$$C_3^4.C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.D_6$