Subgroup ($H$) information
Description: | $C_2\times D_4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$ab^{2}c^{12}d^{3}e^{4}, b^{3}d^{3}e, c^{9}e^{3}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_6^4.D_6$ |
Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^3.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | not computed | |||
Normalizer: | not computed | |||
Normal closure: | $C_6^2:(D_4\times D_9)$ | |||
Core: | $C_2^2$ | |||
Minimal over-subgroups: | $C_6:D_4$ | $C_6\times D_4$ | ||
Maximal under-subgroups: | $D_4$ | $D_4$ | $D_4$ | $D_4$ |
Other information
Number of subgroups in this autjugacy class | $162$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_6^3.S_3^2$ |