Subgroup ($H$) information
| Description: | $C_6:D_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$ab^{2}c^{12}d^{3}e^{4}, d^{2}e^{4}, b^{3}d^{5}e^{5}, c^{9}e^{3}, c^{18}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_6^4.D_6$ |
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^3.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $54$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_6^3.S_3^2$ |