Subgroup ($H$) information
| Description: | $C_3:D_4$ | 
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Index: | \(648\)\(\medspace = 2^{3} \cdot 3^{4} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $ab^{2}c^{3}d^{3}e^{2}, b^{3}d^{3}e^{3}, c^{18}, d^{2}e^{4}$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_6^4.D_6$ | 
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^3.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
| Centralizer: | not computed | ||
| Normalizer: | $C_6^2:D_4$ | ||
| Normal closure: | $C_3^3.\GL(2,\mathbb{Z}/4)$ | ||
| Core: | $C_2$ | ||
| Minimal over-subgroups: | $C_6\wr C_2$ | $C_6:D_4$ | $C_6:D_4$ | 
| Maximal under-subgroups: | $D_4$ | 
Other information
| Number of subgroups in this autjugacy class | $54$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_6^3.S_3^2$ | 
