-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '15552.dp', 'ambient_counter': 94, 'ambient_order': 15552, 'ambient_tex': 'C_6^4.D_6', 'central': False, 'central_factor': False, 'centralizer_order': 36, 'characteristic': True, 'core_order': 972, 'counter': 147, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '15552.dp.16.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '16.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '16.11', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 11, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 16, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2\\times D_4', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '972.589', 'subgroup_hash': 589, 'subgroup_order': 972, 'subgroup_tex': 'C_3^4.A_4', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '15552.dp', 'aut_centralizer_order': None, 'aut_label': '16.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '432.A', 'complements': ['972.B', '972.C', '972.D', '972.E'], 'conjugacy_class_count': 1, 'contained_in': ['8.a1', '8.b1', '8.j1', '8.k1', '8.l1', '8.m1'], 'contains': ['48.d1', '48.e1', '48.f1', '48.cc1', '48.cd1', '48.ce1', '48.cf1', '64.a1'], 'core': '16.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [275, 2058, 1668, 4257], 'generators': [4, 1296, 6048, 9264, 7776, 5184, 144], 'label': '15552.dp.16.a1', 'mobius_quo': 0, 'mobius_sub': None, 'normal_closure': '16.a1', 'normal_contained_in': ['8.a1', '8.b1'], 'normal_contains': ['48.d1', '48.e1', '48.f1'], 'normalizer': '1.a1', 'old_label': '16.a1', 'projective_image': '15552.dp', 'quotient_action_image': '4.2', 'quotient_action_kernel': '4.2', 'quotient_action_kernel_order': 4, 'quotient_fusion': None, 'short_label': '16.a1', 'subgroup_fusion': None, 'weyl_group': '432.745'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '27.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 36, 'aut_gen_orders': [6, 18, 12], 'aut_gens': [[1, 3, 27, 162], [110, 563, 549, 317], [776, 320, 36, 488], [758, 375, 639, 596]], 'aut_group': None, 'aut_hash': 7897320585225846535, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 944784, 'aut_permdeg': 648, 'aut_perms': [1658003731239926930885792053822882256481574953219610944501790707441901800134747936678493210022660934965842021103072407353171685455191130929822039441077992737544558012298941628728126500062780698507269203311954204130405964957515469842512582960699451749414654344635284914501176108533354103618552138785559404878432280085300713638356900480432724402773553964641193251646069647266749414512366570218558070438597960484001939780869681409077522763668561268256472303713988784433444466827092539356023284440417634966025401535175634981776191541673687016596184576521673167739224428691216236478933177076238290423393835066132559234162107053748553964617394803115928468442795285371358668308254150673408018068761316485402886731547551436858746205870377761774737339022402067439314875696923406162387440228322322138666066805389717485710500364681866829672039400578675617803281230316597129782376771702503157773798160643683142079560969675306665442709725063454287979631528387335315305183810940129841355500875300430336165465386013696903657201174472068484137497445378981811134377709194933969040886591011166654761517166331187797622907392412574381907140446111155166817292867223197174623856801240488901440649033449824316552848707120325329858716918662136512004018858167417077394066075851704325305476153525048665571056986035463588104523287051284320939214476982157277720814200611923387141940485920970967551866508472997158535618426129568486872800398258634646616354322250497254677911456286995647694101261493944442642506542261123841927394036135322419920091284631592614402592310249580, 964028334445192364462982228552132570660110874716065776433087515143185764542627803028613632929930034927234872515483783395458688132548261305259947578851871419389162591003910862059236501338798647262327531362930027484330765760672440910143555088292858433001866394632742157907468689506203678159821004550823998378605902196959758981645001291272770465114662157262353734433645466698562462513299656953833120193013061308055757489494420618446993671927579192504192737409503474401073043115164308355224854543591062798653646752674354888592204060088698311420682112618900427586882269313001692508965533526260141332392568043587062478625869301262489254253203643168364042617470472451245319871091888700407646874819798501191255594564800088156555258301657267007818662594013204370860825057139713118526289624954946306434681369627947034187081748117722239207109835002169229525187689110727236858756966777908018122850898853679491013832457225980737383948645674045309580237831276363073127152100933416374950684596055097421160569185332210686442431655533595111489006958443459576044019714854404644536809226593923653289520957030956019336211232753258072542865370917246039264471754994901191423828938833444390262915192142327386944749961360060389689398813473270486341057507666377138799042115497787948039029387174064606948797701886338276437347095655419714268469224176930919538099400125782311202260780452521115127538039869205383839270255722161605622497977528002096049455992651392587436837401147392950082591602023822992277679845455722700293024090755061272545876246421736791764400218118781, 504807256939541960160535926925456366219684170786454031375263710573766347085577756150026950940959985326786210981055192937108698548909858288579910652434179668863688716359641024548359517536504372571852151336557766336552195537068580293294229049355413923156617051270896005656156783984218950903835456868061195772645840522995490569069849111381308128354695731592379491170810554466113493097337742774261025929323565852226944720155988267633862663713279213073764925188099230566752150331062504334790964054639095279922692301060101358432846745173800674838795689762433961383401092384907588217619555174760779163222903745499191329115840885241178255460231732073270304169238798149139317228896955786944167667056831907990453786478134715964520025580936855201908186296059827745147023458382950284669772084216623702683222420313967365542854926563243459032891064811811288971778007664162532996775616333666836170501325388379631172649662642919927449861265472265330070810411967228423038642604999725197660694551336722232769471713657137720555921635549529534008993588399687213825651682147574817176090238822918266425263752079312988273634710844663569194951014511158287679604361041311117172223409061136279715160270744183091211567887461770619954605451865437931474681441197679546770136381152325278433527111028477624891452472370079328757031193330352713271938559998619793296842287241389408700934888065276024621586270078772973334603707893020013308458456268090987460405480627031226160282479294514259460084582920360937114860728374093585279130701281054290705004275888841319509248663629439], 'aut_phi_ratio': 2916.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 1, 2, 1], [3, 1, 6, 1], [3, 3, 3, 2], [3, 3, 18, 1], [6, 3, 2, 1], [6, 3, 6, 1], [6, 3, 9, 2], [6, 3, 54, 1], [9, 36, 18, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_3^4.C_6^2.C_3^3.D_6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 3, 'autcent_group': '729.504', 'autcent_hash': 504, 'autcent_nilpotent': True, 'autcent_order': 729, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_3^6', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '1296.2938', 'autcentquo_hash': 2938, 'autcentquo_nilpotent': False, 'autcentquo_order': 1296, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_6^2:S_3^2', 'cc_stats': [[1, 1, 1], [2, 3, 1], [3, 1, 8], [3, 3, 24], [6, 3, 80], [9, 36, 18]], 'center_label': '9.2', 'center_order': 9, 'central_product': False, 'central_quotient': '108.41', 'commutator_count': 1, 'commutator_label': '36.14', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 589, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 1, 2, 4], [3, 3, 2, 12], [6, 3, 2, 40], [9, 36, 2, 9]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 520, 'exponent': 18, 'exponents_of_order': [5, 2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '9.2', 'frattini_quotient': '108.41', 'hash': 589, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [3, 3, 2, 6], 'inner_gens': [[1, 75, 27, 162], [118, 3, 594, 297], [1, 570, 27, 162], [1, 30, 27, 162]], 'inner_hash': 41, 'inner_nilpotent': False, 'inner_order': 108, 'inner_split': False, 'inner_tex': 'C_3^2\\times A_4', 'inner_used': [1, 2, 3, 4], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 27], [3, 105]], 'label': '972.589', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C3^4.A4', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 13, 'number_characteristic_subgroups': 11, 'number_conjugacy_classes': 132, 'number_divisions': 67, 'number_normal_subgroups': 68, 'number_subgroup_autclasses': 63, 'number_subgroup_classes': 464, 'number_subgroups': 1440, 'old_label': None, 'order': 972, 'order_factorization_type': 32, 'order_stats': [[1, 1], [2, 3], [3, 80], [6, 240], [9, 648]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 18, 'outer_gen_orders': [6, 6, 6], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[110, 724, 144, 182], [758, 728, 639, 596], [342, 385, 144, 847]], 'outer_group': None, 'outer_hash': 3086866264388824751, 'outer_nilpotent': False, 'outer_order': 8748, 'outer_permdeg': 21, 'outer_perms': [10115771471245578485, 17798975605630880160, 7683982287732760291], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_3^4.C_3^2.D_6', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [3, 3, 3], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 13], [3, 1], [6, 52]], 'representations': {'PC': {'code': 174307205211059963017676469621, 'gens': [1, 2, 4, 6], 'pres': [7, 3, 3, 3, 2, 3, 2, 3, 1051, 50, 5554, 80, 4170, 124, 7069]}, 'Perm': {'d': 22, 'gens': [56201147912173070397, 109994244946877507571, 61194246182125160197, 109994244946877491200, 104197, 482630400, 1037836800]}}, 'schur_multiplier': [3, 3, 6], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 3, 3], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_3^4.A_4', 'transitive_degree': 54, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '24.15', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 36, 'aut_gen_orders': [12, 6, 6, 18, 2, 18], 'aut_gens': [[1, 2, 12, 432, 2592], [6337, 2954, 2940, 14256, 8640], [3745, 11234, 14124, 2160, 12960], [14569, 866, 9564, 5616, 14256], [15529, 9650, 1812, 4752, 2160], [11329, 5402, 204, 5616, 14256], [8041, 3818, 12900, 4752, 2160]], 'aut_group': None, 'aut_hash': 4504041920383935304, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 31104, 'aut_permdeg': 128, 'aut_perms': [110893626837188355482891836783057133078766191823963720636982128101953321753655959822326990827218700143264179526129819529498628497684154683970666680630259560524262414452904899267861329725104176507670791640385676956805, 174270734476654264890971783882038927390937389017701427415790163557696652360603983544270145427873271534695058501427803686530529837278094796316278120365760015897317559542357212072128949436812337837178906404579986671346, 38538294357761333637547472318369254507919889978474078259870737649367239191539750343719538295618334639541158103538772724553516810211650470224035019870629419190576656946902205529432448316213611668368233671207071390006, 249492816706460950289842070108406455163975019208147389268807986880850020902619787140593168426946123654057461161825875807874332835962938936125604287073405909253918176779221170968416033811288748723118100332169909775412, 101136715229109793573007899301773428528451871725229604241870739711119797423611644025977164282418102015094110952669291497148967880208326464484108674000363200703187984523635776275053687638235448229380918257708969561776, 190611978506884363896981877081866185078732761322049873062036538261227397858321879651065213331634266974068224304474839201875398977170839418469664979047950267622444707315059483649643708662047950334076601032847378348604], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 3, 1, 2], [2, 6, 1, 1], [2, 18, 1, 1], [2, 54, 1, 1], [2, 54, 2, 1], [2, 108, 1, 2], [3, 2, 1, 2], [3, 3, 1, 2], [3, 4, 1, 1], [3, 6, 1, 5], [3, 12, 1, 3], [4, 18, 1, 1], [4, 54, 1, 1], [4, 54, 2, 1], [4, 108, 1, 4], [6, 2, 1, 2], [6, 3, 1, 6], [6, 4, 1, 3], [6, 4, 2, 1], [6, 6, 1, 27], [6, 6, 2, 6], [6, 12, 1, 41], [6, 12, 2, 18], [6, 36, 1, 1], [6, 54, 1, 4], [6, 54, 2, 2], [6, 108, 1, 7], [6, 108, 2, 6], [6, 216, 1, 3], [9, 72, 1, 3], [9, 144, 1, 3], [12, 36, 1, 1], [12, 54, 1, 4], [12, 54, 2, 2], [12, 108, 1, 11], [12, 108, 2, 6], [12, 216, 1, 9], [18, 72, 1, 3], [18, 144, 1, 6], [18, 144, 2, 3], [18, 432, 1, 3], [36, 432, 1, 3]], 'aut_supersolvable': False, 'aut_tex': 'C_2\\times C_6^2.C_3^3.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': '3888.fl', 'autcentquo_hash': 3044566718417071494, 'autcentquo_nilpotent': False, 'autcentquo_order': 3888, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_3^3.(C_6\\times S_4)', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 3, 2], [2, 6, 1], [2, 18, 1], [2, 54, 3], [2, 108, 2], [3, 2, 2], [3, 3, 2], [3, 4, 1], [3, 6, 5], [3, 12, 3], [4, 18, 1], [4, 54, 3], [4, 108, 4], [6, 2, 2], [6, 3, 6], [6, 4, 5], [6, 6, 39], [6, 12, 77], [6, 36, 1], [6, 54, 8], [6, 108, 19], [6, 216, 3], [9, 72, 3], [9, 144, 3], [12, 36, 1], [12, 54, 8], [12, 108, 23], [12, 216, 9], [18, 72, 3], [18, 144, 12], [18, 432, 3], [36, 432, 3]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '7776.dy', 'commutator_count': 1, 'commutator_label': '648.319', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 11, 'conjugacy_classes_known': True, 'counter': 94, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 3, 1, 2], [2, 6, 1, 1], [2, 18, 1, 1], [2, 54, 1, 3], [2, 108, 1, 2], [3, 2, 1, 2], [3, 3, 2, 1], [3, 4, 1, 1], [3, 6, 1, 1], [3, 6, 2, 2], [3, 12, 1, 1], [3, 12, 2, 1], [4, 18, 1, 1], [4, 54, 1, 3], [4, 108, 1, 4], [6, 2, 1, 2], [6, 3, 2, 3], [6, 4, 1, 5], [6, 6, 1, 7], [6, 6, 2, 16], [6, 12, 1, 11], [6, 12, 2, 33], [6, 36, 1, 1], [6, 54, 2, 4], [6, 108, 1, 3], [6, 108, 2, 8], [6, 216, 1, 1], [6, 216, 2, 1], [9, 72, 1, 1], [9, 72, 2, 1], [9, 144, 1, 1], [9, 144, 2, 1], [12, 36, 1, 1], [12, 54, 2, 4], [12, 108, 1, 3], [12, 108, 2, 10], [12, 216, 1, 3], [12, 216, 2, 3], [18, 72, 1, 1], [18, 72, 2, 1], [18, 144, 1, 2], [18, 144, 2, 5], [18, 432, 1, 1], [18, 432, 2, 1], [36, 432, 1, 1], [36, 432, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': None, 'exponent': 36, 'exponents_of_order': [6, 5], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 0, 16], [12, 1, 2]], 'familial': False, 'frattini_label': '18.5', 'frattini_quotient': '864.4690', 'hash': 154246664385077618, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 36, 'inner_gen_orders': [12, 6, 18, 6, 6], 'inner_gens': [[1, 14834, 5676, 14256, 8640], [3745, 2, 10308, 2160, 12960], [14641, 8282, 12, 2592, 4752], [4321, 866, 13404, 432, 2592], [12097, 5186, 444, 432, 2592]], 'inner_hash': 1798508750155658558, 'inner_nilpotent': False, 'inner_order': 7776, 'inner_split': True, 'inner_tex': 'C_6^3.S_3^2', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 24], [2, 42], [3, 24], [4, 15], [6, 70], [12, 86]], 'label': '15552.dp', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C6^4.D6', 'ngens': 11, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 215, 'number_characteristic_subgroups': 118, 'number_conjugacy_classes': 261, 'number_divisions': 165, 'number_normal_subgroups': 126, 'number_subgroup_autclasses': 4900, 'number_subgroup_classes': 5948, 'number_subgroups': 123570, 'old_label': None, 'order': 15552, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 411], [3, 80], [4, 612], [6, 4368], [9, 648], [12, 4896], [18, 3240], [36, 1296]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [0, 0], 'outer_gens': [[217, 2, 12, 432, 2592], [5185, 5186, 12, 2160, 12960]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 26, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 3], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 18], [3, 8], [4, 19], [6, 30], [8, 6], [12, 42], [24, 34]], 'representations': {'PC': {'code': '1026443151632060123927052002535544065244452809555291157660508939457902085553996039225111557807986862058839821704878857460329710861608677926835344895952995998490464982369590193069349173', 'gens': [1, 2, 4, 8, 10], 'pres': [11, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 163196, 326349, 56, 9638, 249747, 226790, 3325, 124, 244204, 388755, 2336, 158, 500549, 106144, 5571, 258, 22182, 1254535, 95058, 19048, 17475, 23822, 260, 1026440, 85555, 42809, 28564, 21447, 950409, 712820, 43602, 9953, 30754, 328, 209098, 627285, 69739, 8766, 28379]}, 'Perm': {'d': 26, 'gens': [32988353322738031068141488, 16211572098992913983171889, 47231787976459017058648937]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 6], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 64, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^4.D_6', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 2, 2, 2, 2], 'aut_gens': [[126, 55, 289, 288], [127, 55, 289, 288], [126, 265, 1, 288], [54, 127, 289, 288], [414, 55, 289, 288], [127, 54, 289, 288], [414, 265, 289, 288]], 'aut_group': '64.138', 'aut_hash': 138, 'aut_nilpotency_class': 3, 'aut_nilpotent': True, 'aut_order': 64, 'aut_permdeg': 8, 'aut_perms': [2309, 526, 5329, 3043, 12316, 18498], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 1, 2, 1], [2, 2, 4, 1], [4, 2, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\wr C_2^2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '32.27', 'autcent_hash': 27, 'autcent_nilpotent': True, 'autcent_order': 32, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\wr C_2', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 2, 'autcentquo_group': '2.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 2, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 2, 4], [4, 2, 2]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '4.2', 'commutator_count': 1, 'commutator_label': '2.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 11, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['8.3', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 2, 1, 4], [4, 2, 1, 2]], 'element_repr_type': 'Perm', 'elementary': 2, 'eulerian_function': 21, 'exponent': 4, 'exponents_of_order': [4], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '8.5', 'hash': 11, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2, 1, 1], 'inner_gens': [[126, 265, 289, 288], [414, 55, 289, 288], [126, 55, 289, 288], [126, 55, 289, 288]], 'inner_hash': 2, 'inner_nilpotent': True, 'inner_order': 4, 'inner_split': False, 'inner_tex': 'C_2^2', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 8], [2, 2]], 'label': '16.11', 'linC_count': 8, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 8, 'linQ_dim': 3, 'linQ_dim_count': 8, 'linR_count': 8, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2*D4', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 10, 'number_divisions': 10, 'number_normal_subgroups': 19, 'number_subgroup_autclasses': 12, 'number_subgroup_classes': 27, 'number_subgroups': 35, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 11], [4, 4]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [0, 0, 151, 0], 'outer_gens': [[54, 127, 289, 288], [127, 55, 289, 288], [415, 54, 1, 288], [127, 54, 289, 288]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [126, 55, 289, 288], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 6, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 2]], 'representations': {'PC': {'code': 8772, 'gens': [1, 2, 3], 'pres': [4, -2, 2, 2, -2, 78, 34]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [16322, 16432, 3198]}, 'GLFp': {'d': 3, 'p': 3, 'gens': [8912, 8156, 13286, 14044]}, 'Perm': {'d': 6, 'gens': [126, 55, 289, 288]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times D_4', 'transitive_degree': 8, 'wreath_data': None, 'wreath_product': False}