Properties

Label 15552.dp.48.cc1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.A_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{2}, e^{3}, d^{3}, c^{16}d^{3}e, d^{2}e^{2}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^4.D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^4$
$\operatorname{Aut}(H)$ $C_3^3.C_6^2.C_3.D_6$
$W$$C_3^2:S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^4.S_3$
Normal closure:$C_3^4.A_4$
Core:$C_3\times C_6^2$
Minimal over-subgroups:$C_3^4.A_4$$C_6^3.C_3$$C_6^3.C_3$$C_3^3.S_4$
Maximal under-subgroups:$C_3\times C_6^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.D_6$